Extensible objects form a challenging case for NRSfM, owing to the lack of a sufficiently constrained extensible model of the point-cloud. We tackle the challenge by proposing 1) convex relaxations of the isometric model up to quasi-isometry, and 2) convex relaxations involving the equiareal deformation model, which preserves local area and has not been used in NRSfM. The equiareal model is appealing because it is physically plausible and widely applicable. However, it has two main difficulties: first, when used on its own, it is ambiguous, and second, it involves quartic, hence highly nonconvex, constraints. Our approach handles the first difficulty by mixing the equiareal with the isometric model and the second difficulty by new convex relaxations. We validate our methods on multiple real and synthetic data, including well-known benchmarks.
translated by 谷歌翻译
We show that for a plane imaged by an endoscope the specular isophotes are concentric circles on the scene plane, which appear as nested ellipses in the image. We show that these ellipses can be detected and used to estimate the plane's normal direction, forming a normal reconstruction method, which we validate on simulated data. In practice, the anatomical surfaces visible in endoscopic images are locally planar. We use our method to show that the surface normal can thus be reconstructed for each of the numerous specularities typically visible on moist tissues. We show results on laparoscopic and colonoscopic images.
translated by 谷歌翻译
我们为正规化优化问题$ g(\ boldsymbol {x}) + h(\ boldsymbol {x})$提供了有效的解决方案,其中$ \ boldsymbol {x} $在单位sphere $ \ vert \ vert \ boldsymbol { x} \ vert_2 = 1 $。在这里$ g(\ cdot)$是lipschitz连续梯度的平稳成本)$通常是非平滑的,但凸出并且绝对同质,\ textit {ef。,}〜规范正则化及其组合。我们的解决方案基于Riemannian近端梯度,使用我们称为\ textIt {代理步骤}}的想法 - 一个标量变量,我们证明,与间隔内的实际步骤大小相对于实际的步骤。对于凸面和绝对均匀的$ h(\ cdot)$,替代步骤尺寸存在,并确定封闭形式中的实际步骤大小和切线更新,因此是完整的近端梯度迭代。基于这些见解,我们使用代理步骤设计了Riemannian近端梯度方法。我们证明,我们的方法仅基于$ g(\ cdot)$成本的线条搜索技术而收敛到关键点。提出的方法可以用几行代码实现。我们通过应用核规范,$ \ ell_1 $规范和核谱规则正规化来显示其有用性。这些改进是一致的,并得到数值实验的支持。
translated by 谷歌翻译
广义procrustes分析(GPA)是通过估计转换将多种形状带入共同参考的问题。 GPA已广泛研究了欧几里得和仿射转化。我们引入了具有可变形转换的GPA,这形成了一个更广泛和困难的问题。我们专门研究了称为线性基扭曲(LBW)的一类转换,该转换包含仿射转换和大多数常规变形模型,例如薄板样条(TPS)。具有变形的GPA是一个无凸的不受限制问题。我们使用两个形状约束来解决可变形GPA的基本歧义,这需要形状协方差的特征值。这些特征值可以独立计算为先验或后部。我们根据特征值分解给出了可变形GPA的封闭形式和最佳解决方案。该解决方案处理正则化,有利于平滑的变形场。它要求转换模型满足自由翻译的基本属性,该译本断言该模型可以实施任何翻译。我们表明,幸运的是,对于大多数常见的转换模型,包括仿射模型和TPS模型,这一属性是正确的。对于其他模型,我们为GPA提供了另一种封闭式解决方案,该解决方案与自由翻译模型的第一个解决方案完全吻合。我们提供用于计算解决方案的伪代码,导致提出的DEFPA方法,该方法快速,全球最佳且广泛适用。我们验证了我们的方法并将其与以前的六个不同2D和3D数据集的工作进行比较,并特别注意从交叉验证中选择超参数。
translated by 谷歌翻译
Specularity prediction is essential to many computer vision applications, giving important visual cues usable in Augmented Reality (AR), Simultaneous Localisation and Mapping (SLAM), 3D reconstruction and material modeling. However, it is a challenging task requiring numerous information from the scene including the camera pose, the geometry of the scene, the light sources and the material properties. Our previous work addressed this task by creating an explicit model using an ellipsoid whose projection fits the specularity image contours for a given camera pose. These ellipsoid-based approaches belong to a family of models called JOint-LIght MAterial Specularity (JOLIMAS), which we have gradually improved by removing assumptions on the scene geometry. However, our most recent approach is still limited to uniformly curved surfaces. This paper generalises JOLIMAS to any surface geometry while improving the quality of specularity prediction, without sacrificing computation performances. The proposed method establishes a link between surface curvature and specularity shape in order to lift the geometric assumptions made in previous work. Contrary to previous work, our new model is built from a physics-based local illumination model namely Torrance-Sparrow, providing an improved reconstruction. Specularity prediction using our new model is tested against the most recent JOLIMAS version on both synthetic and real sequences with objects of various general shapes. Our method outperforms previous approaches in specularity prediction, including the real-time setup, as shown in the supplementary videos.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
The appearance of an object can be fleeting when it transforms. As eggs are broken or paper is torn, their color, shape and texture can change dramatically, preserving virtually nothing of the original except for the identity itself. Yet, this important phenomenon is largely absent from existing video object segmentation (VOS) benchmarks. In this work, we close the gap by collecting a new dataset for Video Object Segmentation under Transformations (VOST). It consists of more than 700 high-resolution videos, captured in diverse environments, which are 20 seconds long on average and densely labeled with instance masks. A careful, multi-step approach is adopted to ensure that these videos focus on complex object transformations, capturing their full temporal extent. We then extensively evaluate state-of-the-art VOS methods and make a number of important discoveries. In particular, we show that existing methods struggle when applied to this novel task and that their main limitation lies in over-reliance on static appearance cues. This motivates us to propose a few modifications for the top-performing baseline that improve its capabilities by better modeling spatio-temporal information. But more broadly, the hope is to stimulate discussion on learning more robust video object representations.
translated by 谷歌翻译
Compact and accurate representations of 3D shapes are central to many perception and robotics tasks. State-of-the-art learning-based methods can reconstruct single objects but scale poorly to large datasets. We present a novel recursive implicit representation to efficiently and accurately encode large datasets of complex 3D shapes by recursively traversing an implicit octree in latent space. Our implicit Recursive Octree Auto-Decoder (ROAD) learns a hierarchically structured latent space enabling state-of-the-art reconstruction results at a compression ratio above 99%. We also propose an efficient curriculum learning scheme that naturally exploits the coarse-to-fine properties of the underlying octree spatial representation. We explore the scaling law relating latent space dimension, dataset size, and reconstruction accuracy, showing that increasing the latent space dimension is enough to scale to large shape datasets. Finally, we show that our learned latent space encodes a coarse-to-fine hierarchical structure yielding reusable latents across different levels of details, and we provide qualitative evidence of generalization to novel shapes outside the training set.
translated by 谷歌翻译
Although deep networks have shown vulnerability to evasion attacks, such attacks have usually unrealistic requirements. Recent literature discussed the possibility to remove or not some of these requirements. This paper contributes to this literature by introducing a carpet-bombing patch attack which has almost no requirement. Targeting the feature representations, this patch attack does not require knowing the network task. This attack decreases accuracy on Imagenet, mAP on Pascal Voc, and IoU on Cityscapes without being aware that the underlying tasks involved classification, detection or semantic segmentation, respectively. Beyond the potential safety issues raised by this attack, the impact of the carpet-bombing attack highlights some interesting property of deep network layer dynamic.
translated by 谷歌翻译
Machine Learning models capable of handling the large datasets collected in the financial world can often become black boxes expensive to run. The quantum computing paradigm suggests new optimization techniques, that combined with classical algorithms, may deliver competitive, faster and more interpretable models. In this work we propose a quantum-enhanced machine learning solution for the prediction of credit rating downgrades, also known as fallen-angels forecasting in the financial risk management field. We implement this solution on a neutral atom Quantum Processing Unit with up to 60 qubits on a real-life dataset. We report competitive performances against the state-of-the-art Random Forest benchmark whilst our model achieves better interpretability and comparable training times. We examine how to improve performance in the near-term validating our ideas with Tensor Networks-based numerical simulations.
translated by 谷歌翻译